Все, происходящее на просторах Вселенной, подчиняется двум несовместимым на первый взгляд наборам законов физики - существует классическая физика, действующая в масштабе окружающего нас мира, и существует жуткая квантовая механика, проявляющаяся на уровне атомов и субатомных частиц. И недавно, ученым из Массачусетского технологического института (Massachusetts Institute of Technology, MIT) удалось создать своего рода "квантовые торнадо", структуры, постоянно совершающие переходы из мира классической физики в мир кантовой механики и наоборот.
Как, наверное, хорошо известно нашим постоянным читателям, в мире квантовой механики становятся возможными такие вещи и события, которые ломают все наше представление, сформированное повседневными наблюдениями за окружающим миром. К примеру, квантовые частицы могут существовать сразу в нескольких местах, туннелироваться через непреодолимые барьеры и моментально обмениваться информацией, невзирая на огромные расстояния.
Эти и другие "чудеса" квантового мира возникают вследствие различных типов взаимодействий между частицами, что является предметом многих научных исследований. Однако, при попытках исследований таких хрупких квантовых взаимодействий в это начинают вмешиваться проявления мира классической физики. А одним из способов избежать такого вмешательства и усиления квантовых эффектов является охлаждение частиц и атомов до температур, очень и очень близких к точке абсолютного нуля. При этом возникает экзотическое состояние вещества, именуемое конденсатом Бозе-Эйнштейна, демонстрирующее квантовое поведение на большем масштабе, доступном для нашего восприятия.
Однако в своих экспериментах физики MIT отошли от традиционного пути, и вместо традиционного конденсата Бозе-Эйнштейна использовали так называемую квантовую жидкость Холла. Этот еще более странный тип материи в оригинале состоит из облаков свободных электронов, пойманных в ловушки магнитных полей, эти облака начинают взаимодействовать друг с другом весьма необычными способами, что приводит к появлению совсем уж "диких" квантовых эффектов. Однако, вместо электронов, которые с большим трудом поддаются контролю и наблюдению, физики MIT использовали облако из миллиона атомов натрия, охлажденных до сверхнизкой температуры.
"Мы заставили эти холодные атомы натрия вести себя подобно электронам в магнитном поле" - пишут исследователи, - "При этом мы получили достаточно высокий уровень контроля над происходящим и смоги визуализировать поведение даже отдельных атомов, что дало нам возможность увидеть, повинуются ли они законам квантовой механики".
Облако холодных атомов было помещено в электромагнитную ловушку и раскручено до скорости 100 оборотов в секунду. Под воздействием вращения облако растянулось по высоте, становясь мо мере увеличения высоты все тоньше и тоньше. И на каком-то этапе этого процесса атомы натрия "переключились" на квантовое поведение.
После такого переключения "игла" атомов начала изгибаться и перевиваться, что привело к ее распадению на отдельные сегменты. Эти вращающиеся сегменты сформировали странную структуру, напоминающую структуру кристалла, которая и была описана учеными термином "квантовое торнадо". Поведение этого "торнадо" определяется исключительно взаимодействиями между атомами, а само "торнадо" постоянно находится в колебательном режиме, подчиняясь то законам классической физики, то квантовой механики.
"Этот эксперимент является своего рода демонстрацией идеи, как взмах крыльев бабочки в Китае, к примеру, может стать зародышем, который разовьется в разрушительный ураган на другой стороне земного шара" - пишут исследователи, - "В нашем эксперименте также имеется "квантовая погода", жидкость Холла, из-за ее квантовой нестабильности в ней возникает и развивается "шторм", состоящий из меньших облаков и завихрений. И мы очень рады, что стали первыми людьми, увидевшими воочию такие квантовые эффекты".